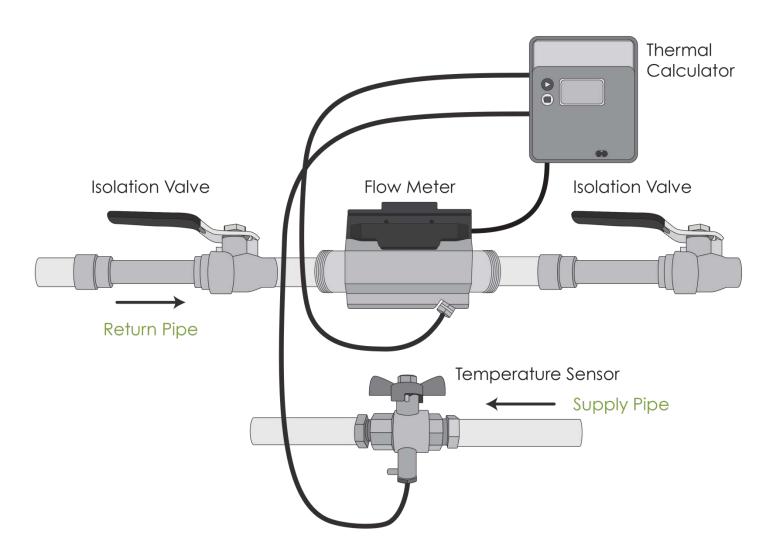


Thomas Bozek, P.Eng.

Manager, Quality and Engineering

Agenda

- Basics of Thermal Metering
- EnerCare Connections Process Overview
- Central Plant Metering
- Thermal Rate Development


Basics of Thermal Metering

- Thermal, BTU and heat meters measure the amount of heat added or removed from a space
- Theory of Operation
 - Measure flow rate of heat transfer fluid
 - Measure change in temperature between inlet and outlet points

Thermal Energy = Flow Rate x Change in Temperature

^{*}Flow rate is the volume of fluid which passes per unit time

Thermal Meter Components

EnerCare Connections Process Overview

- 1. Design and Engineering Requirements
- 2. Meter Installation Options
- 3. Final Approval
- 4. Project Execution

Step 1 – Design and Engineering Requirements

- Documentation requirements
 - Mechanical and electrical drawings
 - Heat pump / fan coil unit specifications
- Heat pump / fan coil unit specifications
 - Pipe sizes
 - Nominal and maximum flow rates
 - Minimum and maximum temperatures in the heating and cooling loops
- Glycol manufacturer data and product properties
 - Densities (kg/m³) table and specific heat (kJ/kg K) table

Installation Final Project Selection Approval Execution

Step 2 – Meter Installation Options

Factory Installation

- Meters installed by the heat pump / fan coil manufacturer in the factory
- Pressure test in the factory with meter installed

On Site Installation

- Spacer installed in place of the thermal meter
- Thermal meter installed on site by Mechanical Contractor

External Installation

- Installation is external to heat pump / fan coil unit
- Occurs on site by Mechanical Contractor

Provision of 24V AC power terminal, power requirement < 1 Watt

Installation Selection Final Approval Project Execution

Step 3 – Final Approval

EnerCare will specify meters for fan coil / heat pump and central plant and send to the engineering consulting firm for approval

Step 4 – Project Execution

- Procurement of equipment to Mechanical Contractor or fan coil / heat pump manufacturer
- Electrical Contractor responsible for communication wiring from each suite to a common area communication closet
- ECI will install calculators (unless factory installed), all terminations, communications / calculator wiring

Step 4 – Project Execution

- Commissioning occurs using a staged approach
 - Multiple suite entries required for commissioning

Installation

Selection

- Requirements
 - Power to suite
 - Thermostat installed
 - Heating / cooling loop riser commissioned by Mechanical Contractor

Central Plant Metering

- Meter the input energy
 - Water, Gas, Electricity
 - Electricity and Gas meters are Measurement Canada approved and sealed for revenue billing
- Meter the output energy
 - Boiler and chiller thermal meters
- EnerCare will specify gas meters based on pipe size, pressure and capacity
- ECI will specify thermal meters based on flow rates, min/max temperatures in the system

Central Plant Metering

Central Plant Metering

Thermal Rate Development

- Central plant meters ideally operational one month prior to first occupancy
- Develop rates using data from the central plant meters and commodity charges

Thermal Rate = Total Fuel Used x Commodity Charge

Total Heating or Cooling Energy Produced

Thermal Rate With Glycol

Thermal Rate_G = Thermal Rate x k

- K = correction factor
- Correction factor dependencies
 - Fluid temperature
 - Percent of glycol in the mix
 - Glycol manufacturer
- Correction factor is dynamic
 - Change occurs every time thermal rates are calculated

Dynamic Rate Development

- Heating rate and cooling rate calculated monthly
- As occupancy increases building dynamics adjust
- Diligence for all stakeholders involved in the process

Thank You